This article was downloaded by:
On: 25 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Journal of Macromolecular Science, Part A
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title \sim content=t713597274

Calculation and Applications of VCM Distribution in Vapor/Water/Solid Phases during VCM Polymerization

R. K. S. Chan ${ }^{\text {a }}$; M. Langsam ${ }^{\text {a }}$; A. E. Hamielec ${ }^{\text {ab }}$
${ }^{\text {a }}$ Plastics R\&D, Air Products and Chemicals, Inc., Allentown, Pennsylvania ${ }^{\text {b }}$ Consultant, Chemical Engineering Department, McMaster University, Hamilton, Canada

To cite this Article Chan, R. K. S. , Langsam, M. and Hamielec, A. E.(1982) 'Calculation and Applications of VCM Distribution in Vapor/Water/Solid Phases during VCM Polymerization', Journal of Macromolecular Science, Part A, 17: 6, $969-981$
To link to this Article: DOI: 10.1080/00222338208056496
URL: http://dx.doi.org/10.1080/00222338208056496

PLEASE SCROLL DOWN FOR ARTICLE

```
Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.
```


Calculation and Applications of VCM Distribution in Vapor/Water/Solid Phases during VCM Polymerization

R. K. S. CHAN, M. LANGSAM, and A. E. HAMIELEC*
Plastics R\&D
Air Products and Chemicals, Inc. Allentown, Pennsylvania 18105

ABSTRACT

The distribution of vinyl chloride monomer (VCM) in vapor, water, swollen polymer, and free monomer phases as a function of conversion of VCM can be calculated from the related partition coefficients. It was found that the amount of monomer in the vapor and water phases is particularly significant, being 20% (at $60^{\circ} \mathrm{C}$) of that in the polymer phase at the peak exotherm. Neglecting the VCM dissolved in water and that in the head space of the reactor would seriously overestimate the polymerization rate and overdesign the required cooling capacity of the reactor. From the distribution the relation between conversion (x) vs pressure (P) after the pressure starts to drop can be developed and used to determine conversion at termination by pressure measurement. The results of x vs P from our partition coefficient approach are consistent with those derived from Flory-Huggin's equation. Also the knowledge of VCM distribution at termination of the polymerization will assist VCM accountability and stripper design.

[^0]
INTRODUCTION

In previous kinetics calculations [1-3] the VCM concentrations in vapor and water phases were neglected. The objectives of this work are to evaluate such concentrations in terms of conversion (x) reactor size $\left(\mathrm{V}_{\mathrm{r}}\right)$ and charging conditions (initial \% fillage of reactor W_{i} and water-to-monomer weight ratio, γ), and to explore the application of same.

DERIVATIONS

VCM Concentrations in Three Phases during Polymerization

The following two expressions (derived in the Appendix) will be useful for later derivations:

$$
\begin{align*}
& M_{0}=V_{r} F_{1}\left(T, \gamma, W_{i}\right) \tag{1}\\
& W=W_{i}+\left\{\frac{x\left(v_{m}-v_{p}\right)\left[R T W_{i}+\left(1-W_{i}\right) P_{m}{ }^{0} M_{w} v_{m}\right]}{\left(R T-P_{m}{ }^{0} M_{m} v_{m}\right)\left(v_{m}+v_{w}\right)}\right\} \tag{2}
\end{align*}
$$

where

$$
\begin{equation*}
F_{1}\left(T, \gamma, W_{i}\right)=\frac{R T W_{i}+P_{m}^{0} M_{m} v_{m}\left(1-W_{i}\right)}{R T\left(v_{m}+\gamma \mathbf{v}_{w}\right)} \tag{3}
\end{equation*}
$$

Equation (1) means that M_{0} and V_{r} are interchangeable. Equation (2) signifies that the \% fillage of reactor (W) is a function of conversion \mathbf{x}, polymerization temperature \mathbf{T}, and changing conditions W_{i} and γ.

VCM in Vapor Phase Before, At, and After the Pressure Starts to

 Drop, N_{v}Before the pressure starts to drop,

$$
\begin{equation*}
N_{v}=\frac{(1-W) V_{r} P_{m}{ }^{0}}{R T} \tag{4}
\end{equation*}
$$

Because of viscosity effect on termination in the solid phase, the peak exotherm (or hot spot) occurs at a pressure drop (usually about 8 psi) which varies with polymerization conditions. Let the pressure at the "hot spot" be denoted by P^{hs},

$$
\begin{align*}
N_{v}^{h s} & =\frac{(1-W) V_{\mathbf{r}}{ }^{h s}}{R T} \\
& =\frac{V_{r} P^{h s}}{R T}\left[1-W_{i}+x^{h s} \frac{\left(v_{m}-v_{p}\right)}{\left(1-\frac{P_{m}{ }^{0} M_{m} V_{m}}{R T}\right)} F_{1}\left(T, \gamma, W_{i}\right)\right] \tag{5}
\end{align*}
$$

After the pressure begins to drop,

$$
\begin{equation*}
N_{v}^{\prime}=\frac{V_{r} P_{m}}{R T}(1-W)=\frac{M_{0}\left(P-P_{w}\right)}{R_{T} F_{1}\left(T, \gamma, W_{i}\right)}(1-W) \tag{6}
\end{equation*}
$$

It will be later derived that the total pressure (P) is a function of x. VCM in Water Phase Before, At, and After the Hot Spot, N_{w}

Before the hot spot,

$$
\begin{equation*}
N_{W}=\frac{C_{w}{ }^{\max } \gamma M_{0}}{M_{m}} \tag{7}
\end{equation*}
$$

when and after the pressure starts to drop,

$$
\begin{equation*}
N_{w}^{\prime}=\frac{C_{w} \gamma M_{0}}{M_{m}}=\frac{P_{m} \gamma M_{0}}{P_{m}^{0} H_{\ell v} M_{m}}=\frac{\left(P-P_{w}\right) \gamma M_{0}}{P_{m}^{0} H_{\ell v} M_{m}} \tag{8}
\end{equation*}
$$

VCM in Solid Phase

Before the pressure starts to drop,

$$
\begin{equation*}
\mathrm{N}_{\mathrm{s}}=\frac{\mathrm{mxM}_{0}}{\mathrm{M}_{\mathrm{m}}} \tag{9}
\end{equation*}
$$

After the pressure starts to drop,

$$
\begin{align*}
N_{S}^{\prime} & =C_{S} \times M_{0} / M_{m}=\frac{P_{m} \times M_{0}}{P_{m}{ }^{0} H_{S v} M_{m}} \\
& =\frac{\left(P-P_{W}\right) \times M_{0}}{P_{m}{ }^{0} H_{S v} M_{m}} \tag{10}
\end{align*}
$$

The total pressure P in Eqs. (9) and (11) will be expressed as a function of X .

Derivation of an Expression for Total Pressure, P, as a Function of Conversion x after Pressure Drop Starts

$$
\begin{equation*}
M_{0} / M_{m}=N_{v}^{\prime}+N_{w}^{\prime}+N_{s}^{\prime}+N_{p} \tag{11}
\end{equation*}
$$

Substitute Eqs. (1), (6), (8), and (10) into Eq. (11):

$$
\begin{aligned}
\frac{M_{0}}{M_{m}}=\frac{M_{0}\left(P-P_{W}\right)}{R T F_{1}\left(T, \gamma, W_{i}\right)}(1-W) & +\frac{\left(P-P_{w}\right) \gamma M_{0}}{P_{m}{ }^{0} H_{\ell v} M_{m}} \\
& +\frac{\left(P-P_{W}\right) \times M_{0}}{P_{m}{ }^{0} H_{S v} M_{m}}+\frac{x M_{0}}{M_{m}}
\end{aligned}
$$

since $P_{W} \cong P_{W}{ }^{0}$, upon rearrangement,

$$
\begin{equation*}
\left(P-P_{W}\right) / P_{m}^{0}=F_{2}\left(x, T, \gamma, W_{i}\right) \tag{12}
\end{equation*}
$$

where
$F_{2}\left(x, T, \gamma, W_{i}\right)=(1-x)\left[\frac{M_{m} P_{m}^{0}(1-W)}{F_{1}\left(T, \gamma, W_{i}\right) R T}+\frac{\gamma}{H_{\ell V}}+\frac{x}{H_{S V}}\right]^{-1}$
Equation (12) dictates the conversion x at different pressures (or pressure drop, $\Delta \mathrm{P}=\mathrm{P}_{\mathrm{m}}^{0}-\mathrm{P}$) after pressure starts to drop. AbdelAlim derived a similar relationship based on Flory-Huggins equation [4]. Substitution of Eq. (12) into Eqs. (6), (8), and (10) would give the
moles of VCM in vapor, water, and solid phases as a function of conversion after the pressure starts to drop:

$$
\begin{align*}
& N_{v}^{\prime}=\frac{M_{0} P_{m}^{0} F_{2}\left(X, T, \gamma, W_{i}\right)}{\operatorname{RTF}_{1}\left(T, \gamma, W_{i}\right)}(1-W) \tag{14}\\
& N_{w^{\prime}}^{\prime}=\frac{M_{0} \gamma F_{2}\left(X, T, \gamma, W_{i}\right)}{H_{\ell v} M_{m}} \tag{15}\\
& N_{S}^{\prime}=\frac{M_{0} X F_{2}\left(x, T, \gamma, W_{i}\right)}{H_{S v} M_{m}} \tag{16}
\end{align*}
$$

Equations (4), (7), and (9) define VCM distribution before the pressure drop and Eqs. (14), (15), and (16) after the pressure starts to drop in VCM polymerization.

Calculation of VCM Mole Fractions in Different Phases during VCM Polymerization

Let VCM mole fraction with respect to total monomer charge, M_{0} / M_{m} be defined as

$$
\begin{array}{lll}
F_{v}=N_{v} M_{m} / M_{0}, & F_{w}=N_{w} M_{m} / M_{0}, & F_{S}=N_{s} M_{m} / M_{0} \\
F_{v}^{\prime}=N_{v}^{\prime} M_{m} / M_{0} & F_{w}^{\prime}=N_{w}^{\prime} M_{m} / M_{0} & F_{S}=N_{s} M_{m} / M_{0} \tag{17}
\end{array}
$$

Substituting Eqs. (4), (6), (7), (8), (9), (10) into (19):

$$
\begin{align*}
& F_{v}=\frac{M_{m} P_{m}^{0}(1-W)}{\operatorname{RTF}_{1}\left(T, \gamma, W_{i}\right)} \tag{18}\\
& F_{W}=C_{w}{ }^{\max }{ }_{\gamma} \tag{19}\\
& F_{S}=M x \tag{20}
\end{align*}
$$

$$
\begin{align*}
& \mathrm{F}_{\mathrm{v}}^{\prime}=\frac{\left(\mathrm{P}-\mathrm{P}_{\mathrm{w}}^{0}\right) \mathrm{M}_{\mathrm{m}}(1-\mathrm{W})}{\operatorname{RTF}_{1}\left(\mathrm{~T}, \gamma, \mathrm{~W}_{\mathrm{i}}\right)} \tag{21}\\
& \mathrm{F}_{\mathrm{w}}^{\prime}=\frac{\gamma\left(\mathrm{P}-\mathrm{P}_{\mathrm{w}}^{0}\right)}{\mathrm{H}_{\ell \mathrm{v}} \mathrm{P}_{\mathrm{m}}^{0}} \tag{22}\\
& \mathrm{~F}_{\mathrm{S}^{\prime}}^{\prime}=\frac{\mathrm{x}\left(\mathrm{P}-\mathrm{P}_{\mathrm{w}}^{0}\right)}{\mathrm{H}_{\mathrm{Sv}} \mathrm{P}_{\mathrm{m}}^{0}} \tag{23}
\end{align*}
$$

The mole fraction of free monomer is

$$
\begin{equation*}
\mathrm{F}_{\mathrm{fm}}=1-\mathrm{x}-\mathrm{F}_{\mathrm{v}}-\mathrm{F}_{\mathrm{w}}-\mathrm{F}_{\mathrm{S}} \tag{24}
\end{equation*}
$$

When either x or P is known, the VCM mole fractions can be calculated through Eqs. (18) to (24). Table 1 shows the fixed parameters at different temperatures used for calculation.

The calculated results of total pressure and mole fractions of VCM in different phases vs conversion are tabulated in Tables 2, 3A, and 3B and plotted in Figs. 1 and 2. The partition coefficients $H_{\ell V}$ and $H_{S V}$ for calculation were taken from our previous work [5] and Berens' work [6].

TABLE 1. Fixed Parameters for Calculation at Different Polymerization Temperatures ${ }^{\text {a }}$

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Temperature (${ }^{\circ} \mathrm{K}$)	$\mathrm{P}_{\mathrm{m}}{ }^{0}$ in		$\frac{\left(v_{m}+\gamma v_{w}\right) P_{m}^{0} M_{m}}{R T}$	$\begin{aligned} & P_{w}{ }^{0} \\ & (\mathrm{psi}) \end{aligned}$
		PSI	dyn/ cm^{2}		
$30^{\circ} \mathrm{C}$	303	66.9	0.461×10^{7}	0.000283	0.615
$40^{\circ} \mathrm{C}$	313	88.2	0.608×10^{7}	0.000362	1.07
$50^{\circ} \mathrm{C}$	323	114.7	0.791×10^{7}	0.000456	1.79
$60^{\circ} \mathrm{C}$	333	145.4	1.00×10^{7}	0.000559	2.890

$$
\begin{gathered}
\mathrm{a}_{\mathrm{W}_{\mathrm{i}}}=0.8, \gamma=1.3,\left(\mathrm{v}_{\mathrm{m}}+\gamma \mathrm{v}_{\mathrm{w}}\right)=2.4766(\mathrm{cc} / \mathrm{g}) ; \mathrm{v}_{\mathrm{w}}=1(\mathrm{cc} / \mathrm{g}), \\
\mathrm{R}=8.3144 \times 10^{7} \quad \frac{\mathrm{dyn} \cdot \mathrm{~cm}}{\mathrm{~g} \cdot \mathrm{~mol} \cdot \mathrm{~K}^{\sigma}}, \mathrm{M}_{\mathrm{m}}=62.5, \frac{(\mathrm{vm}+\gamma \mathrm{vw}) \mathrm{M}_{\mathrm{m}}}{R}=0.1862 \\
\times 10^{-7} \frac{\mathrm{~cm}^{\circ} \mathrm{K}}{\mathrm{dyn}}, \mathrm{v}_{\mathrm{p}}=0.7143(\mathrm{cc} / \mathrm{g}),\left(\mathrm{v}_{\mathrm{m}}-\mathrm{v}_{\mathrm{p}}\right)=0.4622(\mathrm{cc} / \mathrm{g}) .
\end{gathered}
$$

TABLE 2. Mole Fraction of VCM in Different Phases at Different Conversions at $50^{\circ} \mathrm{C}^{\mathrm{a}}$

| | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

FIG. 1. Monomer activity $\mathrm{P}_{\mathrm{m}} / \mathrm{P}_{\mathrm{m}}{ }^{0}$ vs conversion.

FIG. 2. Mole fraction of vinyl chloride F in different phases vs conversion x in VCM polymerization.
TABLE 3A. Mole Fraction of VCM in Different Phases at Different Conversions at $50^{\circ} \mathrm{C}^{\mathrm{a}}$

x	$\mathrm{P}(\mathrm{psi})$	$P_{m}\left(\mathrm{dyn} / \mathrm{cm}^{2}\right)$	$\begin{aligned} & \mathrm{Pm} / \mathrm{P}_{\mathrm{m}}{ }^{0} \\ & {\left[=\mathrm{f}_{\mathbf{2}}(\mathrm{x}, \mathrm{~T},\right.} \\ & \left.\gamma, \mathrm{W}_{\mathrm{i}}\right] \end{aligned}$	$\mathrm{H}_{\ell \mathrm{V}}$	$\mathrm{H}_{\text {SV }}$	F_{fm}	F_{V}	F_{w}	F_{S}	$\begin{aligned} & \left(F_{v}+F_{w}\right) / \\ & \left(F_{s}\right. \end{aligned}$
0	116.5	0.791×10^{7}	1	83.3	3.45	0.973	0.0113	0.0156	0	
0.10	116.5	0.791×10^{7}	1	83.3	3.45	0.843	0.0122	0.0156	0.029	0.951
0.2	116.5	0.791×10^{7}	1	83.3	3.45	0.713	0.0130	0.0156	0.058	0.493
0.3	116.5	0.791×10^{7}	1	83.3	3.45	0.584	0.0139	0.0156	0.087	0.369
0.4	116.5	0.791×10^{7}	1	83.3	3.45	0.454	0.0147	0.0156	0.116	0.292
0.5	116.5	0.791×10^{7}	1	83.3	3.45	0.324	0.0156	0.0156	0.145	0.246
0.6	116.5	0.791×10^{7}	1	83.3	3.45	0.194	0.0164	0.0156	0.174	0.216
0.749	116.5	0.791×10^{7}	1	83.3	3.45	0.0011	0.0173	0.0156	0.217	0.185
0.781	108.5*	0.736×10^{7}	0.924	84.0	3.45	0	0.0166*	0.0143*	0.187	0.173
0.822	106.5	0.722×10^{7}	0.913	89.5	5.07	0	0.0167	0.0133	0.148	0.203
0.850	96.5	0.653×10^{7}	0.826	90.8	5.70	0	0.0154	0.0118	0.123	0.248
0.871	86.5	0.584×10^{7}	0.738	93.4	6.15	0	0.0138	0.0103	0.105	0.254
0.890	76.5	0.515×10^{7}	0.651	103.3	6.51	0	0.0123	0.0082	0.089	0.251
0.930	66.5	0.446×10^{7}	0.564	102.5	10.25	0	0.0109	0.00715	0.051	0.372
0.946	46.5	0.308×10^{7}	0.39	108.3	8.67	0	0.0076	0.00461	0.042	0.291

[^1]TABLE 3B. Mole Fraction of VCM in Different Phases at Different Conversions at $60^{\circ} \mathrm{C}$

x	P (psi)	$\mathrm{P}_{\mathrm{m}}\left(\mathrm{dyn} / \mathrm{cm}^{2}\right)$	$\mathbf{P}_{\mathrm{m}} / \mathrm{P}_{\mathrm{m}}{ }^{0}$	$\mathrm{H}_{\ell \mathrm{V}}$	$\mathrm{H}_{\text {SV }}$	$F_{\text {fm }}$	F_{v}	F_{W}	F_{S}	$\left(\mathrm{F}_{\mathrm{V}}+\mathrm{F}_{\mathrm{w}}\right) / \mathrm{F}_{\mathrm{S}}$
0	145	1.0×10^{7}	1	87.0	3.13	0.916	0.0694	0.0149	0	0
0.1	145	1.0×10^{7}	1	87.0	3.13	0.838	0.0149	0.0149	0.032	0.931
0.2	145	1.0×10^{7}	1	87.0	3.13	0.705	0.0160	0.0149	0.064	0.483
0.3	145	1.0×10^{7}	1	87.0	3.13	0.572	0.0171	0.0149	0.096	0.333
0.4	145	1.0×0^{7}	1	87.0	3.13	0.439	0.0182	0.0149	0.128	0.259
0.5	145	1.0×10^{7}	1	87.0	3.13	0.306	0.0192	0.0149	0.160	0.213
0.6	145	1.0×10^{7}	1	87.0	3.13	0.713	0.0203	0.0149	0.192	0.183
0.7	145	1.0×10^{7}	1	87.0	3.13	0.040	0.0214	0.0149	0.224	0.162
0.804	137	0.945×10^{7}	0.945	87.1	4.73	0	0.0225	0.0149	0.170	0.220
0.835	127	0.8759×10^{7}	0.8759	87.6	5.54	0	0.0228	0.0148	0.151	0.249
0.851	117	0.8069×10^{7}	0.8069	88.7	5.76	0	0.0230	0.0147	0.148	0.255
0.864	107	0.7380×10^{7}	0.7380	86.8	5.90	0	0.0231	0.0150	0.146	0.261
0.882	97	0.6690×10^{7}	0.6690	86.9	6.37	0	0.0233	0.0150	0.138	0.278
0.900	87	0.6000×10^{7}	0.6000	87.6	7.06	0	0.0235	0.0148	0.127	0.302
0.920	77	0.5310×10^{7}	0.5310	87.0	8.17	0	0.0237	0.0149	0.113	0.342
0.931	67	0.4621×10^{7}	0.4621	88.0	8.40	0	0.0239	0.0148	0.111	0.349

COMPARISON OF THEORETICAL AND EXPERIMENTAL RESULTS

Conversion vs pressure data at termination after the pressure drop have been collected in our laboratory through gravimetric method (see Fig. 1). It appears that the calculated results closely approximate the observed data from both our laboratory and Abdel-Alim's work [4].

CONCLUSIONS

From Fig. 2 it is apparent that the VCM concentrations in vapor and water phases are not negligible. At the hot spot the amount of VCM in vapor and water phases is about 20% of that in the solid phase. The reaction rate at the hot spot would be overestimated if FCM in the vapor and water phases is not accounted for, as previously done. The relation of conversion vs pressure after the pressure starts to drop, calculated from the VCM concentrations in three phases, appears to be a close approximation of the practice. Also, knowledge of VCM distribution at termination of the polymerization will assist VCM accountability and stripper design.
APPENDIX 1: DERIVATION OF EQS. (1) AND (2)

The initial liquid phase volume is

$$
W_{i} V_{r}=M_{0} \gamma V_{W}+V_{m}\left[M_{0}-\frac{\left(1-W_{i}\right) V_{r} P_{m}^{0} M_{m}}{R T}\right]
$$

or

$$
\begin{align*}
M_{0} & =V_{r}\left[\left\{W_{i}+\frac{\left(1-W_{i}\right) P_{m}{ }^{0} M_{m} v_{m}}{R T}\right\} /\left(v_{m}+\gamma v_{w}\right)\right] \\
& =V_{r} F_{1}\left(T, \gamma, W_{i}\right) \tag{1}
\end{align*}
$$

where

$$
\begin{equation*}
\mathrm{F}_{1}\left(\mathrm{~T}, \gamma, \mathrm{~W}_{\mathrm{i}}\right)=\frac{\mathrm{RTW}_{\mathrm{i}}+\left(1-\mathrm{W}_{\mathrm{i}}\right) \mathrm{P}_{\mathrm{m}}^{0} \mathrm{M}_{\mathrm{m}} \mathrm{v}_{\mathrm{m}}}{\mathrm{RT}\left(\mathrm{v}_{\mathrm{m}}+\gamma \mathrm{v}_{\mathrm{w}}\right)} \tag{A1}
\end{equation*}
$$

During VCM polymerization the vapor phase volume, V_{v} increases by

$$
\begin{equation*}
\Delta V_{v}=x M_{0}\left(v_{m}-v_{p}\right) /\left(1-\frac{v_{m} M_{m} P_{m}^{0}}{R T}\right) \tag{A2}
\end{equation*}
$$

The denominator represents free monomer vaporization to fill up the shrinked volume:

$$
\begin{align*}
V_{v} & =(1-W) V_{r}=\left(1-W_{i}\right) V_{r}+\Delta V_{v} \\
& =\left(1-W_{i}\right) V_{r}+x\left(v_{m}-v_{p}\right) V_{r} F_{1}\left(T, \gamma, W_{i}\right) /\left(1-\frac{v_{m} M_{m} P_{m}^{0}}{R T}\right) \\
& =\left\{\left(1-W_{i}\right)-\frac{x\left(v_{m}-v_{p}\right)}{\left(1-\frac{P_{m}{ }^{0} M_{m} V_{m}}{R T}\right)} F_{1}\left(T, \gamma, W_{i}\right)\right\} V_{r} \tag{A3}
\end{align*}
$$

Also, from combining Eqs. (A1) and (A3),

$$
\begin{equation*}
\mathrm{W}=\mathrm{W}_{\mathrm{i}}+\left\{\frac{\mathrm{X}\left(\mathrm{v}_{\mathrm{m}}-\mathrm{v}_{\mathrm{p}}\right)\left[R T W_{\mathrm{i}}+\left(1-\mathrm{W}_{\mathrm{i}}\right) \mathrm{P}_{\mathrm{m}}{ }^{0} \mathrm{M}_{\mathrm{w}} \mathrm{v}_{\mathrm{m}}\right]}{\left(R T-\mathrm{p}_{\mathrm{m}}{ }^{0} \mathrm{M}_{\mathrm{m}} \mathrm{v}_{\mathrm{m}}\right)\left(\mathrm{v}_{\mathrm{m}}+\gamma \mathrm{v}_{\mathrm{w}}\right)}\right\} \tag{2}
\end{equation*}
$$

SYMBOLS

x	conversion
M_{0}	weight of monomer charged
V_{r}	reactor volume
γ	water to monomer weight ratio
$\mathrm{v}_{\mathrm{m}}, \mathrm{v}_{\mathrm{w}}$, and v_{p}	specific volumes of monomer, water, and polymer
M_{m}, M_{w}	molecular weight of monomer and water
R	gas constant
T	absolute temperature
$\mathrm{P}_{\mathrm{m}}{ }^{0}$	vapor pressure of VCM (all pressures are in absolute pressure, not gauge pressure)

P_{m}	partial pressure of VCM
$\mathrm{P}_{\mathrm{w}}, \mathrm{P}_{\mathrm{w}}{ }^{0}$	partial pressure and vapor pressure of water
$\mathrm{C}_{\text {S }}$	VCM concentration in PVC (g/g PVC)
C_{w}	VCM concentration in water ($\mathrm{g} / \mathrm{g} \mathrm{H}_{2} \mathrm{O}$)
m	maximum VCM concentration in PVC (g VCM/ g PVC)
$H_{S \ell}, H_{\ell V}, H_{S V}$	partition coefficient of VCM in solid/water, water/vapor, and solid/vapor phases, respectively
$t^{\text {hs }}$	the reaction time where reaction rate is maximum. It usually takes place at pressure drop equal to 8 psi
W	\% fillage of reactor at time, t
W_{i}	\% fillage of reactor at $t=0$
V_{v}	vapor-phase volume
$\mathrm{N}_{\mathrm{v}}, \mathrm{N}_{\mathrm{w}}$, and N_{s}	moles of VCM in vapor, water, and PVC phases
$\mathrm{N}_{\mathrm{p}}, \mathrm{N}_{\mathrm{fm}}$	moles of VCM in polymer form and in free monomer phase
$\mathrm{N}_{\mathrm{v}}{ }^{\prime}, \mathrm{N}_{\mathrm{W}}{ }^{\prime}$, and $\mathrm{N}_{\mathrm{S}}{ }^{\prime}$	$\mathrm{N}_{\mathrm{V}}, \mathrm{N}_{\mathrm{w}}$, and N_{S} after pressure starts to drop
$\mathrm{F}_{v^{\prime}}, \mathrm{F}_{w^{\prime}}, \mathrm{F}_{\mathrm{s}}, \mathrm{F}_{\mathrm{v}}{ }^{\prime}$,	mole fraction of $\mathrm{N}^{\boldsymbol{t}} \mathrm{S}$ with respect to moles
$\mathrm{F}_{\mathrm{w}}{ }^{\prime}$ and $\mathrm{F}_{\mathrm{S}}{ }^{\prime}$	charged

ACKNOWLEDGMENTS

The authors are thankful to Air Products and Chemicals, Inc. for encouraging the presentation, and to Drs G. J. Mantell and N. Friis for their reviews on our work.

REFERENCES

[1] A. H. Abdel-Alim and A. E. Hamielec, J. Appl. Polym. Sci., 16, 783 (1972).
[2] J. Ugelstad et al., Pure Appl. Chem., 25, 121 (1971); Makromol. Chem., 164, 171 (1973).
[3] L. Martin, PhD Thesis, 'Kinetic Studies of Low Temperature Polymerization of Vinyl Chloride," Institute of Industrial Chemistry, Technical University of Denmark, 1978.
[4] A. A. Abdel-Alim, J. Appl. Polym. Sci., 22, 3597 (1978).
[5] C. B. Patel, R. E. Grandin, R. Gupta, E. M. Phillips, C. E. Reynolds, and R. K. S. Chan, Polym. J., Jpn., 11(1), 43 (1979).
[6] A. R. Berens, Polym. Prepr., 15(2), 203 (1975).

[^0]: *Consultant, Chemical Engineering Department, McMaster University, Hamilton, Ontario, Canada.

[^1]: ${ }^{\mathrm{a}} \mathbf{P}_{\mathrm{w}}{ }^{0}=1.79 \mathrm{psi}, \mathbf{P}_{\mathrm{m}}{ }^{0}=114.7 \mathrm{psi}, \mathrm{W}_{\mathrm{i}}=0.8 ; \gamma=1.3,{ }^{*}$ means "at the maximum reaction rate. ${ }^{1}$

